PHYSICS OF MATERIALS

Physics School Autumn 2024

Series 12 13 December 2024

Exercise 1 Precipitation sequence in Al-Cu

- a) We generally observe that coherent precipitates are small (nanometric). Why?
- b) Suppose:
 - 1) The elastic energy per volume unit of a flat precipitate (penny-shape) is given by $\Delta G_{el} = \frac{3}{2} E \eta^2$. E is the Young modulus, and η is the relative expansion of the precipitate versus the matrix.
 - 2) The alloy Al-4%Cu has a precipitation sequence: $GP \rightarrow \theta'' \rightarrow \theta' \rightarrow \theta$. The most stable precipitates increasingly lose their coherence with the matrix.
 - 3) Data: E = 70 GPa, $\gamma = 0.5 J / m^2$, the aspect ratio A = radius/thickness is a constant equal to 5. The crystalline structure of the precipitates is represented in the following figure.

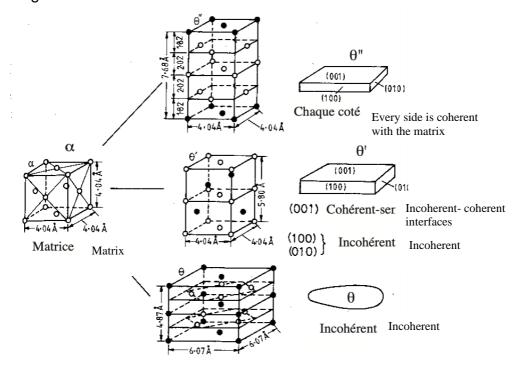


Figure 1 Representation of primitive cells of $oldsymbol{ heta}$ phases in Al-Cu

What is the critical thickness to pass from the formation of GP zones to the formation of θ " precipitates?

Exercise 2 Localized nucleation

In the case of localized nucleation on a flat surface, show that:

$$R_c^{loc} = -\frac{2\gamma_{SL}}{\Delta g_V} \quad \text{and} \quad \Delta G_c^{loc} = \frac{4\pi}{3} \frac{\gamma_{SL}^3}{\Delta g_V^2} \left(2 - 3\cos\theta + (\cos\theta)^3 \right)$$

where $\Delta g_V = g_S - g_L$ is the free energy per volume unit variation during the solidification and γ_{SL} is the "solid-liquid" interface energy per surface unit.